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Abstract: As far as the software system is concerned, the reliability is one of the important quality attributes in 

software development process. The recently growing trends in software development process witnessed the paradigm 

shift to component based software. The reliability of component based software is difficult to estimate directly by 

taking the reliability of individual components into account and measuring the component reliability in software is not 

an easy task alike. In this paper we propose a method to estimate the reliability of the software consisting of 

components by using different neural network architectures. The proposed method considers software consisting of 

components divided into different sets and observes the number of faults encountered over a cumulative execution time 

interval for the known set of components and after this we estimate the number of faults predicted for the randomly 

chosen set of components in software over next cumulative execution time interval. In this process, we estimate the 

faults prediction behavior in the set of components over a cumulative execution time interval besides this the prediction 

of faults is estimated for the complete software. We apply the feed forward neural network architectures & its 

generalization capability to predict the faults in each component of the software with the prediction of faults for the 

complete software for given cumulative execution time.  

 

Keywords: software reliability estimation, component based software reliability, feed forward neural network, fault 

prediction.  

1. INTRODUCTION: 

Component based software reliability estimation is an 

emerging and still a trust area of software engineering. The 

architecture of software in itself emerges with motivation 

for predicting reliable behavior of overall system [1].The 

reliability of the component based software reflects the 

interdependency with reliability of components. It is one of 

the possibilities that overall software system reliability 

effects with the functioning of its components. On the 

other aspect the overall reliability of the software does not 

affect with the failure of any component. The reliability 

tolerance limit must specify in this aspect. Software system 

design is a high level abstraction of a software system; its 

components and their connection. Thus software system 

design complements component definition which focuses 

on the individual components and their interfaces. The 

failure occurrence in any component may cause the failure 

in whole software system design, this gives the connection 

between components and system design. It is natural to 

extend contacts to the level as architectural specification 

and worthwhile to develop specialized methods for the 

prediction of reliability for component based software 

system design [2]. The model of software reliability 

prediction for component based software should consider 

the nature of fault population contained within the whole 

software as well as in the components of software. 

Therefore, due to these faults the software exhibits the  

 

 

failure behavior. It is well defined that the most useful 

reliability criteria are residual fault density or the failure 

intensity. There are various different  

 

Software reliability growth models have also been 

proposed [3, 4, 5]. Every model has its own limitation and 

criteria for predicting the reliability of software. As far as 

concerns of component based software, the mean time to 

failure occurrence will consider for whole software as well 

as for each component of the software. These proposed 

models are considered to model the failure process and to 

characterize how software reliability varies with time and 

other factors. These models are used not only to estimate 

the current values of the reliability measures such as the 

residual fault density, the failure intensity and mean time 

to failure but also to predict their future values. It is found 

with empirical evidence [6,7] that different models have 

different predictive accuracy at different phases of testing 

and there is no single analytic model that can be relied on 

for accurate prediction in all software . Therefore, the 

selection of particular model is very important in software 

reliability estimation. The selection of the model can 

consider in two ways (i) by generating the applicability of 
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software reliability growth models by analyzing their 

predictability across a broad range of dataset and (ii) by 

developing an adaptive model building system [8]. The 

problem in first approach is the issue of generalization 

which remains partially unanswered due to the lack of 

availability of sufficient data sets for software as well as 

for its various components. The second approach i.e. 

adaptive model, which does not depend on assumed 

parameters and based on only the last failure history of the 

software system as whole and also failure history of its 

each component. The failure history of components of 

software produces an immense effect for predicting the 

future failures by the software depending on the failure 

history and so that the adaptive model should consider the 

failure history of complete software system with the failure 

history information of each component to predict the 

possible future failures by the software. In the literature, 

the adaptive model or non-parametric models like neural 

network and support vector machine (SVM) based on 

statistical failure data such as cumulative failure detected, 

failure rate, time between failures, next time to failure etc. 

[9, 10]. There are various attempts have been reported in 

literature review for using neural network techniques to 

model the software reliability prediction. In [11] the first 

time neural network is used to predict software reliability. 

In this work, feed forward neural network and recurrent 

neural networks along with Elman neural network and 

Jordan neural network is used for predicting the 

cumulative number of detected faults by using execution 

time as input. This work also discussed the effects of 

various training procedures applied to neural network 

namely data representation methods, architectural issues 

concluding that neural network can construct models with 

varying complexity and adaptability for different datasets 

in a realistic environment. In [12] the two methods are 

described for software reliability prediction, first neural 

networks and second recalibration for parametric models 

that were compared by using common predictability 

measure and common data sets. The comparative results 

revealed that neural network could be used for better trend 

prediction. In [13], the effectiveness of the neural back 

propagation network method (BPNN)  is investigated for 

software reliability assignment and prediction using 

multiple recent inter failure times as input to predict the 

next failure time. In this work the performance of neural 

network architecture with various numbers of input nodes, 

hidden nodes is evaluated and concluded that the 

effectiveness of a neural network method depends on the 

nature of data sets up to a larger extent. In [14], a modified 

Elnan recurrent neural network is proposed to model and 

predict software failure trends. In [15], the artificial neural 

network is implemented to software reliability modeling 

and examined several conventional software reliability 

growth models by eliminating some unrealistic 

assumption. In [16], the feed forward back propagation 

algorithm is applied to predict the software reliability. In 

this work different failure data sets collected from several 

standard software projects has been applied to neural 

network model. It has also been seen in [17] that the neural 

network model is considered as a better estimator for the 

software reliability predictor rather than statistical 

approaches. In most of the previous works the neural 

network is trained with the data sets of past history of 

failures in the software for the specific period of time [18, 

19,   20]. The trained neural network is expected to predict 

the occurrence of failure for the time period which has not 

presented in the data sets. Thus, the prediction of software 

reliability is depending upon the occurrence of failures in 

the given time period used in the training data set. This 

approach is working quite effectively for the simple 

software system design. The same approach could not 

work with so effectively for predicting the reliability of 

component based software. Reliability prediction for the 

component based software will not only depend upon the 

failure history of software but also on the reliability of 

each interdependent component. The software reliability 

for each component is predicted with occurrence of 

failures in the given time period for the component. The 

estimated reliability of components is further used to 

estimate the reliability of the whole software. Therefore, in 

this present work the feed forward neural networks are 

used to predict the reliability of component based software. 

In this approach a dataset of failure occurrence for each 

component in given time period is considered as the local 

training set. Thus, each component has its own local 

training set. These training sets consist with occurrence of 

failure for the component in specific period of same time. 

There is feed forward neural network corresponds to each 

component. These neural networks are trained with local 

training sets of respective components. The prediction of 

reliability for each component is considered from 

respective trained neural network architecture. Thus, we 

have the set of trained neural network corresponds to each 

component in the software. The output of these neural 

networks and the failure history of the software for a 

specific period of time are now used to construct the global 

training set for the main neural network which is 

predicting the expected failure for the time period not used 

in the global training set. Thus, this neural network is used 

to estimate the reliability of component based software for 

the presented time period. This is obvious that the 

prediction of reliability for component software depends 

on the reliability state of each component and previous 

failure information about the software. 

The rest of the paper is organized in four sections. The 

section 2 discusses about the multilayer neural network 

and back propagation learning rule, section 3 of the paper 

presents the simulation and implementation details, section 

4 incorporates the results & discussion. Section 5 considers 

the conclusion followed by references. 

 

2. Multilayer Feed Forward Neural Network: 

The multilayer feed forward neural network can be used to 

capture the classification explicitly in the set of input 

output pattern collected during an experiment and 

simultaneously expected to model the unknown system or 
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function from which the prediction can be made for the 

new or unknown set of data [2]. The collected input-output 

pattern pairs are presented to neural network on repeated 

basis to accomplish the training of the neural network for 

capturing the implicit relation function between input and 

output pattern pairs. Once the mapping function between 

the input-output pair is captured or estimated the network 

can be used to predict the future projection for any 

unknown set of input pattern(test pattern set), which has 

not been provided during the training. The network 

produced the output for this unknown input pattern, this 

output will be an interpolated version of the output patterns 

corresponding to the input training patterns close to the 

given test input pattern. Thus, the network can be used for 

the prediction after the effective training or learning. The 

neural network architecture requires the training set of 

sample examples of input-output pattern pairs to 

accomplish the learning. A feed forward neural network 

architecture as shown in figure 1 is needed to perform the 

task of training.  

 

  
Figure 1: Feed Forward Multilayer Neural Network Architecture 

 

This neural network consist of differentiable continuous 

but non linear output function in all processing units [22] 

of output and all hidden layer. The number of processing 

units in the input layer corresponds to the dimensionality 

of the input pattern vectors are linear. The number of 

processing units in the output layer corresponds to the 

number of distinct classes in the pattern classification. The 

number of processing units in the hidden layers and the 

number of hidden layers in the network correspond to the 

convex of classes. All the processing units of input layer 

are interconnected to all the processing units of the hidden 

layers and all the processing units of the hidden layer are 

interconnected to the processing units of the output layer 

and weight is associated with each connection. We can use 

supervised leaning method i.e generalized delta learning 

rule so that a network can be trained to capture the 

mapping explicitly in the set of input output pattern 

collected during an experiment and simultaneously 

expected to model the unknown system or function from 

which the prediction can be made for the new or unknown 

set of data not used in the training set [23]. The possible 

output pattern class would be approximately an 

interpolated version of the output pattern class 

corresponding to the input learning pattern close to the 

given test input pattern. This method involves the 

modification of the weight between the processing units of 

successive layers. For such an updating of weight in the 

supervisory mode, it becomes necessary to know the 

desired output for each unit in the hidden and output layers 

so that the instantaneous squared error (the difference 

between the desired and actual output for the current 

presented input pattern from each unit of the output layer) 

may be used to guide the updating of the weights. We 

propagate the error from output layers to successive hidden 

layers for updating the weights. This leaning method is 

known as back-propagation learning [24, 25] based on the 

principle of gradient descent along the error surface in 

weight space. In this proposed neural network architecture 

the activation value and output values of the units of 

output layer and hidden layer are shown with following set 

of equations.  

The activation and output signal for the j
th

 units of output layer for the presented input pattern at the k
th

 iteration can 

represent as: 

               𝑦𝑗
𝑘 =  𝑆ℎ 𝑞ℎ

𝑘 𝑊𝑗ℎ                                                                                                                                    (2.1)

𝐻

ℎ=1
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𝑆𝑗  𝑦𝑗
ℎ = 𝑓 𝑦𝑗

ℎ =
1

1+𝑒
−𝑦𝑗

𝑘                                                                                                                                        (2.2) 

The activation and output signal for the h
th

 unit of hidden layer for the presented input at the k
th

 iteration can represent 

as: 

 

𝑞ℎ
𝑘 =  𝑆𝑖 𝑥𝑖

ℎ 𝑊ℎ𝑖

𝑛

𝑖=1

=  𝑥𝑖
𝑘  𝑊ℎ𝑖

𝑛

𝑖=1

                                                                                                            (2.3) 

       

𝑆
ℎ 𝑞ℎ

𝑖  =𝑓 𝑞ℎ
𝑘 =

1

1+𝑒
−𝑞ℎ

𝑘

                                                                                                                                    (2.4) 

The instantaneous squared error (SE) for the presented input pattern at the iteration k can represent as: 

𝐸𝑘 =
1

2
  𝑑𝑗

𝑘 − 𝑆𝑗  𝑦𝑗
𝑘  

2

                                                                                                                     (2.5)

𝑛

𝑗=1

 

Where 𝑑𝑗
𝑘  is the desired output pattern at the j

th
 unit for the 

given input-output pattern pair.  

So that, in this paper we use the back-propagation learning 

rule to train the system for capturing the implicit 

relationship function between input and its corresponding 

output pattern. This functional mapping used to establish a 

generalize relationship between input output pattern pair of 

training set. This generalized mapping is used to predict 

the failure intensity likely to occur for the given time 

period from each component of the software. The 

reliabilities of each component is estimated from its 

corresponding neural network with prediction of failure 

intensities. This estimated reliability with failure history of 

 the software for the specific time period is used to predict 

or estimate the reliability of whole software for the specific 

time period which is not used during the training. Hence 

the number of independent neural network architecture is 

depending upon the number of components in the 

software. Thus, for each component there is neural 

network architecture with its local training set. Every local 

training set involves the data of previous failure in specific 

period of time for the respective component. The estimated 

software reliability from each component with the data of 

previous failure in specific time for the whole software is 

now used to predict the reliability of the whole software. 

 

3. Neural Network Modeling for Failure Prediction: 

It has been discussed in previous section of paper that the 

back-propagation learning rule for the feed forward neural 

network is used to capture the implied functional 

relationship between input pattern and corresponding 

output pattern. Thus a widely used feed forward neural 

networks trained with back propagation learning rule can 

be represented as a mapping N:I
n
 → O

m
, where I

n
 is a point 

in the n dimensional input space and O
m
 is point in the m 

dimensional output space. Generally this mapping is 

performed with multilayer feed forward neural network. 

The training procedure is a mapping operation T:Ik→Ok in 

which (Ik, Ok) = {(i,o) ⃓  i∈I
n
 and O∈O

m
} is a subset of k 

stimuli-response pairs sampled from (I
n
, O

m
) spaces. The 

function T is an approximation to neural network. The 

problem of prediction can be formulated as a mapping 

f:Il→Ol in which Il represent a sequence of I
th

 recent 

samples of the stimuli and Ol the predicted output 

corresponding to a future moment. Once we train the 

network within a certain prespecified error tolerance we 

can make the network predicts an output by feeding ik+d ∈ 

I
n
 as stimulus input. The input ik+d corresponds to future 

stimuli with a time difference of d consecutive random 

intervals from the k
th

 moment. For d=1 the prediction is 

called the next step prediction and for d = n(≥2) 

consecutive intervals it is known as the n-step ahead or 

long term prediction [26].  

Hence to consider the problem of component based 

software reliability prediction we consider the number of 

feed forward neural networks as the number of 

components. Let we have the r components in the software 

so that we consider the r number of neural network 

architectures. Each neural network will predict the 

reliability of the corresponding component. Therefore, for 

each component software reliability prediction a sequence 

of cumulative execution time ((t1,t2,………tk)∈Tk and the 

corresponding observed accumulated faults 

((μ1,μ2,……μk)∈Fk) upto the present time tk is required as 

the input-output sample patterns in the local training set for 

the corresponding component. Thus, for each component 

we consider a different training set which we are calling as 

local training sets. In each local training set of the 

component, the input pattern information i.e. cumulative 

execution time remains same but the corresponding 

observed accumulated faults are different. The global 

training set which is used to train the main neural network 

for the prediction of software reliability for the complete 

software contains with sequence of cumulative execution 

time (tk+1,……….tk+q) ∈ Tn+q, number of predicted faults in 

each component (f1,f2,…..fr)∈Fr and the corresponding 

observed accumulated faults ((μF1,μF2,………..μFn)∈Fk).  

Thus we can formulate our software reliability prediction 

problem in terms of a feed forward neural network 

mapping as: 

N:{((Tk+q,fr),μFk}→μFk+h          (3.1)                                                                       

Where ((Tk+q,fr), μFk) represents the failure history of the 

software system at time tk+q with predicted faults from 
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each component at time tk used to train the network and 

μFk+h the network’s prediction. Similarly, we can also 

formulate the software reliability prediction problem for 

each component in terms of local feed forward neural 

network mapping as: 

                    𝑁𝑟 : { 𝑇𝑘 , 𝐹𝑘 𝑟 , 𝑡𝑘+ℎ} → 𝜇𝑘+ℎ
𝑟     (3.2)                                                   

Where    𝑇𝑘 , 𝐹𝑘 𝑟   represents the failure history of r
th

 

component of the system at time tk used to train the r
th

 

network and  𝜇𝑘+ℎ
𝑟   the r

th
 network prediction for the r

th
 

component of the software. Thus, on the successful 

training of neural network, it can be used to predict the 

total number of faults to be detected at the end of a future 

test session k+h feeding tk+h as its input. In the process of 

training, the two techniques are used to exhibit the 

predictive capability of neural network. The first method is 

used in the generalization training. This is the standard 

way in which most of the feed forward neural networks are 

trained. During training, each input it at time t is associated 

with the corresponding output Ot. Here, the network learns 

to generalize the actual functionality between the input 

variable and the output variable. The second regime is 

used in the prediction training. It refers to an approach 

used in training recurrent networks. Under this training the 

value of the input variable it at time t is associated with the 

value of the output variable Ot+1 corresponds to the next 

time step t+1. Here the network learns to predict output 

anticipated at the next time step rather than computing 

outputs corresponding to the present input [27]. 

Hence for the prediction or estimation for the expected 

number of faults, we consider a component based software 

for which we are interested in estimating the reliability. 

Let the software consists of r individual components. Each 

component has cumulative execution time and its own 

accumulated faults. Therefore, we consider the r different 

neural network architecture. Now we consider the arbitrary 

r
th

 component from the components of software. The r
th

 

component considers the 𝑡1
𝑟 , 𝑡2

𝑟 , ………………𝑡𝑘
𝑟   

cumulative execution times and 𝑓1
𝑟 , 𝑓2

𝑟 , ……… . . 𝑓𝑘
𝑟  are 

observed accumulated faults. This set of execution time 

and accumulated faults consider the training set of the r
th

 

component and in such a way each component has its own 

training set. Thus at any instant of  time we have the r local 

training sets. Therefore individual r neural networks are 

trained with corresponding local training set and predict 

the expected number of faults in the next instant of 

execution time. Hence the training set for r
th

 component is 

represented as:  

𝑇𝑟 =
  𝑡1

𝑟 , 𝑓1
𝑟 ,  𝑡2

𝑟 , 𝑓2
𝑟 , ………………… . .  𝑡𝑛

𝑟 , 𝑓𝑟
𝑛        (3.3)  

The  r
th

 neural network is initialized with random weights 

prior to learning. In the process of learning for input-

output pattern pairs of training set T
r
, patterns are 

presented on repeated basis. Suppose an arbitrary input 

pattern 𝑡𝑙
𝑟  is presented at iteration m on the current values 

of weights. The neural network n
r
 produces the  output 

pattern:  
  

𝑁𝑟 = {𝑆1(𝑦1
𝑟 𝑙 ,𝑆2  𝑦2

𝑟 𝑙 , . . 𝑆𝑗  𝑦𝑗
𝑟 𝑙  …𝑆𝑝  𝑦𝑝

𝑟 𝑙     (3.4) 

 

Suppose number of units in the output layer is P so that the 

instantaneous square error at l
th

 iteration is defined as: 

𝐸𝑙
𝑟 =

1

2
  (𝑓𝑙

𝑟 − 𝑆𝑗  𝑦𝑗
𝑟 𝑙  

2
𝑃

𝑗=1

      (3.5) 

The weights will converge to optimal weights by 

modification in the weights during the training process of 

network for capturing the required mapping function. The 

training process is in such a way that the weight changes at 

current iteration will proportional to the gradient descent 

along the instantaneous error surface i.e. 

∆𝑊𝑗ℎ 𝑙 = −𝜂0

𝜕𝐸𝑙
𝑟

𝜕𝑊𝑗ℎ(𝑙)
  𝑓𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟   (3.6) 

And ∆𝑊ℎ𝑖 𝑙 = −𝜂ℎ
𝜕𝐸𝑙

𝑟

𝜕𝑊ℎ𝑖(𝑙)
     𝑓𝑜𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟     (3.7) 

Hence with the chain rule in limit of stochastic gradient method we have: 
𝜕𝐸𝑙

𝑟

𝜕𝑊𝑗ℎ(𝑙)

=  
𝜕𝐸𝑙

𝑟

𝜕𝑦𝑗
𝑟(𝑙)

.
𝜕𝑦𝑖

𝑟(𝑙)

𝜕𝑊𝑖ℎ(𝑙)

=
𝜕𝐸𝑙

𝑟

𝜕𝑦𝑗
𝑟 𝑙 

. 𝑆ℎ(𝑞ℎ
𝑟 𝑙 ) 

or 

𝜕𝐸𝑙
𝑟

𝜕𝑊𝑖ℎ(𝑙)

=
𝜕𝐸𝑙

𝑟

𝜕𝑆𝑗 (𝑦𝑗
𝑟 𝑙 )

.
𝜕𝑆𝑗 (𝑦𝑗

𝑟 𝑙 )

𝜕𝑦𝑗
𝑟(𝑙)

. 𝑆ℎ(𝑞ℎ
𝑟 𝑙 ) 

 

                                                                         = ∆𝑙
𝑟 . 𝑆ℎ(𝑞ℎ

𝑟 𝑙                                                                              (3.8) 

           Where   ∆𝑙
𝑟=

𝜕𝐸𝑙
𝑟

𝜕𝑆𝑗 (𝑦𝑗
𝑟(𝑙)

.
𝜕𝑆𝑗 (𝑦𝑗

𝑟(𝑙)

𝜕𝑦𝑗
𝑟(𝑙)

 

           Now,   ∆𝑙
𝑟=

𝜕𝐸𝑙
𝑟

𝜕𝑆𝑗 (𝑦𝑗
𝑟(𝑙)

. 𝑆𝑗 (𝑦𝑗
𝑟 𝑙 )(1 − 𝑆𝑗  𝑦𝑗

𝑟 𝑙 )  

                = −  𝑓𝑗𝑙
𝑟 − 𝑆𝑗  𝑦𝑗

𝑟 𝑙   𝑆𝑗  𝑦𝑗
𝑟 𝑙  (1 − 𝑆𝑗 (𝑦𝑗

𝑟 𝑙 )
𝑝
𝑗=1 )      

So that from equation (3.6) we have 

                  ∆𝑊𝑗ℎ 𝑙 = 𝜂0∆𝑙
𝑟 . 𝑆ℎ 𝑞ℎ

𝑟 𝑙                                                                                                                (3.9) 

        And 𝑊𝑗ℎ 𝑙 + 1 =  𝑊𝑗ℎ 𝑙 + 𝜂0∆𝑙
𝑟𝑆ℎ 𝑞ℎ

𝑟 𝑙                                                                                          (3.10) 

Similarly, from equation (3.7) we have 
𝜕𝐸𝑙

𝑟

𝜕𝑊ℎ𝑖(𝑙)
=  

𝜕𝐸𝑙
𝑟

𝜕𝑞ℎ
𝑟(𝑙)

.
𝜕𝑞ℎ

𝑟(𝑙)

𝜕𝑊ℎ𝑖(𝑙)
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                                   =  
𝜕𝐸𝑙

𝑟

𝜕𝑞ℎ
𝑟 𝑙 

 . 𝑡𝑘
𝑟 𝑙                                 

                                 =  
𝜕𝐸𝑙

𝑟

𝜕𝑆ℎ  (𝑞ℎ
𝑟(𝑙)

.
𝜕𝑆ℎ(𝑞ℎ

𝑟(𝑙)

𝜕𝑞ℎ
𝑟 𝑙 

. 𝑡𝑘
𝑟(𝑙) 

                                                                       =  
𝜕𝐸𝑙

𝑟

𝜕𝑆ℎ 𝑞ℎ
𝑟 𝑙  

. 𝑆ℎ 𝑞ℎ
𝑟 𝑙   1 − 𝑆ℎ 𝑞ℎ

𝑟 𝑙   . 𝑡𝑘
𝑟(𝑙) 

                                                                     =  
𝜕𝐸𝑙

𝑟

𝜕𝑦𝑗
𝑟 .

𝜕𝑦𝑗
𝑟 𝑙 

𝜕𝑆ℎ(𝑞ℎ
𝑟(𝑙)

. 𝑆ℎ(𝑞ℎ
𝑟 𝑙 )(1 − 𝑆ℎ 𝑞ℎ

𝑟 𝑙  . 𝑡𝑘
𝑟(𝑙) 

 

                                                   =  ∆𝑙
𝑟 . 𝑊𝑗ℎ . 𝑆ℎ 𝑞ℎ

𝑟 𝑙   (1 − 𝑆ℎ 𝑞ℎ
𝑟 𝑙 ) . 𝑡𝑘

𝑟(𝑙) 

Therefore, from equation (3.7) we have 

∆𝑊ℎ𝑖 𝑙 =  𝜂ℎ∆𝑙
𝑟 . 𝑊𝑗ℎ . 𝑆ℎ 𝑞ℎ

𝑟 𝑙   1 − 𝑆ℎ 𝑞ℎ
𝑟 𝑙   . 𝑡𝑘

𝑟 𝑙                                                                   (3.11) 

and 

𝑊ℎ𝑖 𝑙 + 1 =  𝑊ℎ𝑖 𝑙 + 𝜂ℎ∆𝑙
𝑟 . 𝑊𝑗ℎ. 𝑆ℎ 𝑞ℎ

𝑟   𝑙   1 − 𝑆ℎ 𝑞ℎ
𝑟 𝑙   . 𝑡𝑘

𝑟 𝑙                                           (3.12) 

 

Hence in this way all the neural networks i.e. l to r are 

combined for the learning process with their local training 

sets. Thus, these r neural networks are able to predict 

reliability of each components in generalize way.  

After this, we consider our global training set to 

accomplish the training of main neural network 

architecture for the prediction of software reliability for the 

complete software. This training set consists of sequence 

of cumulative execution time i.e. (tk+1, tk+2,……………tk+q 

∈ Tk), the number of possible predicted faults in each 

component and the corresponding observed accumulated 

faults (μF1, μF2,………….. μFn) ∈ Fn from the whole 

software i.e. 

𝐺𝑇 = { 𝑡𝑘+1,  𝑓1
𝑘+1, ……𝑓𝑟

𝑘+1 , 𝜇𝐹𝑘+1 ,

(𝑡𝑘+2,  𝑓1
𝑘+2 … . . 𝑓𝑟

𝑘+2 , 𝜇𝐹𝑘+2 … . .  𝑡𝑘+𝑞 𝑓1
𝑘+𝑞

. . , 𝑓𝑟
𝑘+𝑞

  , 𝜇𝐹𝑘+𝑞}         (3.13) 

Now this training is presented to neural network 

architecture which is predicting the reliability of the whole 

software. This prediction depends upon number of failures 

in cumulative execution time and predicted faults in each 

component. During the training process the weight update 

in neural network architecture for output and hidden layer 

can define in similar manner of equation (3.10) and (3.11). 

Hence we have: 

∆𝑊ℎ𝑖
 𝑙 = 𝜂ℎ∆𝑙𝑊𝑗ℎ . 𝑆ℎ 𝑞ℎ 𝑙   1

− 𝑆ℎ 𝑞ℎ 𝑙   . 𝑥𝑖
𝑙         (3.14) 

and     𝑊ℎ𝑗ℎ 𝑙 = 𝜂0∆𝑙𝑆ℎ   𝑞ℎ 𝑙                    (3.15)  

       where 

∆𝑙 = −  𝜇𝐹𝑗
𝑘+𝑙 − 𝑆𝑗  𝑦𝑗

𝑙  . 𝑆𝑗 (𝑦𝑗
𝑙)(1 − 𝑆𝑗  𝑦𝑗

𝑙 )

𝑝

𝑗=1

       ⩝ 𝑑

= 1 𝑡𝑜 𝑞  

and 

𝑥𝑖
𝑙 = 𝑡𝑘+𝑑

𝑖 +   𝑓𝑖𝑗
𝑘+𝑑

𝑟

𝑗=1

      ⩝ 𝑖 = 1 𝑡𝑜 𝑛 𝑎𝑛𝑑 𝑑

= 1 𝑡𝑜 𝑞   (3.16)       
Thus, the set of neural network i.e. r in number are used to 

predict failures in the presented time as input pattern 

through the captured implied function relationships by the 

network. This predicted information is used with 

cumulative execution time to predict the reliability of 

whole software. Therefore, it is now required to consider 

the formation of local training sets and global training set 

with proper encoding for cumulative execution time and 

accumulated faults to accomplish the implementation and 

simulation of proposed method. 

4. Implementation Detail and Simulation Design: 

In this section of implementation detail and simulation 

design we consider the input-output pattern representation 

for training with the selection of various required 

parameters & architecture to accomplish the training for 

prediction of reliability in component based software. So 

that before we attempt to use neural network it is necessary 

to encode the patterns in a form that is suitable for the 

training pattern to the neural network. As we know that the 

neuron state variable in feed forward networks is restricted 

to 0 to 1.0 or -1.0 to +1.0 due to the sigmoid single 

function use in the units of hidden and output layers. 

Hence the input/output variables of the problem should be 

encoded to conform to this range. It is obvious that for 

prediction problem where input/output variable may range 

over a large numerical value and to use the direct binary 

encoding is a trivial form. However, such a direct scaling 

may result both in the lost of prediction accuracy and the 

network failure to discriminate different output values. 

Some of such schemes are found in literature [28] to 

address this situation. A better generalization and 

prediction is obtained [6,7] using gray coding when 

compared to binary  encoding representation. Thus the 

gray coding is used to eliminate hamming clifts in the 

input representation. Thus in our application we employ a 
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simple gray code representation because our data set 

represents a sequence of increasing numerical values and 

prediction is near this kind of hamming clift resulted in 

very high error and this anomaly reduced with the use of 

Gray coding. Therefore, in order to simulate the 

experiment for the prediction of reliability in component 

based software model, we have combined the individual 

neural network architecture for each component with its 

local training set. The global training set for the neural 

network which is used to predict the reliability for whole 

software includes extra values in terms of predicted faults 

from the components of software. Therefore the number of 

units used in the input and the output layer is determined 

by the number of bits used to encode the input and the 

output variables used in our experiments for the 

components in the software and for the complete software. 

Tables from 1.1 to 1.10 are showing the encoding used for 

the components and their corresponding observed faults. 

 

Table 1.1: Coding for 1
st
 software(SW1) containing 10 components with faults 

Time Number of 

Components 

Faults Detected  Input Encoding Output Encoding 

t1-t5 4+3+3 3+5+6 000000.0110.0010.0010 00010.00111.00101 

t6-t10 4+3+3 2+4+5 000001.0110.0010.0010 00011.00110.00111 

t11-t15 4+3+3 2+3+8 000010.0110.0010.0010 00011.00010.01100 

t16-t20 4+3+3 0+4+4 000011.0110.0010.0010 00000.00110.00110 

t21-t25 4+3+3 1+2+1 000110.0110.0010.0010 00001.00011.00001 

 

Table 1.2: Coding for 2
nd

 software(SW2) containing 20 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 8+5+7 14+6+9 000000.1100.0111.0100 01001.00101.01101 

t6-t10 8+5+7 11+8+8 000001.1100.0111.0100 01110.01100.01100 

t11-t15 8+5+7 6+6+6 000011.1100.0111.0100 00101.00101.00101 

t16-t20 8+5+7 8+4+3 000010.1100.0111.0100 01100.00110.00100 

t21-t25 8+5+7 5+2+1 000110.1100.0111.0100 00111.00011.00001 

 

Table 1.3: Coding for 3
rd

 software(SW3) containing 30 components with faults. 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 7+14+9 11+20+9 000000.0100.1001.1101 01110.11110.01101 

t6-t10 7+14+9 8+22+7 000001.0100.1001.1101 01100.11101.00100 

t11-t15 7+14+9 5+17+10 000011.0100.1001.1101 00111.11001.01111 

t16-t20 7+14+9 7+11+6 000010.0100.1001.1101 00100.01110.00101 

t21-t25 7+14+9 4+9+2 000110.0100.1001.1101 00110.01101.00011 

 

Table 1.4: Coding for 4
th

 software(SW4) containing 09 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 4+3+2 14+7+8 000000.0110.0010.0011 01001.00100.0110 

t6-t10 4+3+2 11+8+9 000001.0110.0010.0011 01110.01100.01101 

t11-t15 4+3+2 6+6+9 000011.0110.0010.0011 00101.00101.01101 

t16-t20 4+3+2 7+4+8 000010. 0110.0010.0011 00100.00110.01100 

t21-t25 4+3+2 1+5+2 000110. 0110.0010.0011 00001.00111.00011 

 

Table 1.5: Coding for 5
th

 software(SW5) containing 25 components with faults. 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 8+10+7 11+9+20 000000.1100.1111.0100 01110.01101.11110 

t6-t10 8+10+7 6+11+8 000001. 1100.1111.0100 00101.01110.01100 

t11-t15 8+10+7 2+4+9 000011. 1100.1111.0100 00011.00110.01101 

t16-t20 8+10+7 17+10+5 000010. 1100.1111.0100 11001.01111.00111 

t21-t25 8+10+7 7+22+8 000110. 1100.1111.0100 00100.11101.01100 

 

Table 1.6: Coding for 6
th

 software(SW6) containing 12 components with faults 
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Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 5+4+3 15+11+12 000000.0111.0110.0010 01000.01110.01010 

t6-t10 5+4+3 12+15+11 000001.0111.0110.0010 01010.01000.01110 

t11-t15 5+4+3 15+18+0 000011.0111.0110.0010 01000.11011.00000 

t16-t20 5+4+3 1+8+16 000010.0111.0110.0010 00001.01100.11000 

t21-t25 5+4+3 16+15+3 000110.0111.0110.0010 11000.01000.00010 

 

Table 1.7: Coding for 7
th

 software(SW7) containing 24 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 10+8+6 6+5+4 000000.1111.1100.0101 00101.00111.00110 

t6-t10 10+8+6 5+4+1 000001.1111.1100.0101 00111.00110.00001 

t11-t15 10+8+6 15+14+13 000011.1111.1100.0101 01000.01001.01011 

t16-t20 10+8+6 13+15+5 000010.1111.1100.0101 01001.01000.00111 

t21-t25 10+8+6 5+6+19 000110.1111.1100.0101 00111.00101.11010 

 

Table 1.8: Coding for 8
th

 software(SW8) containing 37 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 11+12+14 0+9+12 000000.1110.1010.1001 00000.01101.01010 

t6-t10 11+12+14 14+11+4 000001.1110.1010.1001 01001.01110.00110 

t11-t15 11+12+14 9+8+8 000011.1110.1010.1001 01101.01100.00100 

t16-t20 11+12+14 3+3+9 000010.1110.1010.1001 00010.00100.01101 

t21-t25 11+12+14 10+11+12 000110.1110.1010.1001 01111.01110.01010 

 

 

Table 1.9: Coding for 9
th

 software(SW9) containing 13 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 3+2+8 12+13+14 000000.0010.0011.1100 01010.01011.01001 

t6-t10 3+2+8 6+7+8 000001.0010.0011.1100 00101.00100.01100 

t11-t15 3+2+8 9+10+16 000011.0010.0011.1100 01101.01111.11000 

t16-t20 3+2+8 9+10+11 000010.0010.0011.1100 01101.01111.01110 

t21-t25 3+2+8 2+7+1 000110.0010.0011.1100 00011.00100.00001 

 

Table 1.10: Coding for 10
th

 software(SW10) containing 18 components with faults 

Time Number of 

Components 

Faults 

Detected  

Input Encoding Output Encoding 

t1-t5 5+6+7 4+5+6 000000.0111.0101.0100 00110.00111.00101 

t6-t10 5+6+7 7+4+2 000001.0111.0101.0100 00100.00110.00011 

t11-t15 5+6+7 11+14+9 000011.0111.0101.0100 01110.01001.01101 

t16-t20 5+6+7 16+9+5 000010. 0111.0101.010 11000.01101.00111 

t21-t25 5+6+7 8+6+7 000110.0111.0101.0100 01100.00101.00100 

The number of units used in the neural network for complete software in the input and output layer is determined by the 

number of bits used to encode one input for execution time & number of bits to express predicted faults from each 

component and the output variables as the number of total actual faults in the complete software in presented 

cumulative execution time. Table 2.1 to 2.10 shows the encoding used in our experiments for the complete software. 

 

Table 2.1: Detected faults in cumulative execution time for software(S/W1) 

Time No. of Components in  

Software one 

Faults 

Detected 

Input Encoding Output Encoding 

t1-t5 10 31 000000.001111 010000 

t6-t10 10 20 000001.001111 011110 

t11-t15 10 37 000011.001111 110111 

t16-t20 10 28 000010. 001111 010010 

t21-t25 10 15 000110. 001111 001000 
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Table 2.2: Detected faults in cumulative execution time for software(S/W2) 

Time No. of Components in 

Software two 

Faults 

Detected 

Input Encoding Output Encoding 

t1-t5 20 38 000000.011110 110101 

t6-t10 20 36 000001.011110 110110 

t11-t15 20 30 000011.011110 010001 

t16-t20 20 24 000010.011110 011101 

t21-t25 20 08 000110.011110 001100 

    

 

Table 2.3: Detected faults in cumulative execution time for software(S/W3) 

Time 
No. of Components in  

Software three 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 25 15 000000.010101 001000 

t6-t10 25 11 000001.010101 001110 

t11-t15 25 17 000011.010101 011001 

t16-t20 25 14 000010.010101 001001 

t21-t25 25 08 000110.010101 001100 

 

Table 2.4: Detected faults in cumulative execution time for software(S/W4) 

Time No. of Components in a 

whole Software four 

Faults 

Detected 

Input Encoding Output Encoding 

t1-t5 30 39 000000.010001 110100 

t6-t10 30 47 000001.010001 111000 

t11-t15 30 39 000011.010001 110100 

t16-t20 30 29 000010.010001 010011 

t21-t25 30 17 000110.010001 011001 

 

Table 2.5: Detected faults in cumulative execution time for software(S/W5) 

Time 
No. of Components in 

Software five 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 35 18 000000.110010 011011 

t6-t10 35 17 000001.110010 011001 

t11-t15 35 20 000011.110010 011110 

t16-t20 35 22 000010.110010 011101 

t21-t25 35 10 000110.110010 001111 

 

Table 2.6: Detected faults in cumulative execution time for software(S/W6) 

Time 
No. of Components in  

Software six 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 40 28 000000.111100 010010 

t6-t10 40 25 000001.111100 010101 

t11-t15 40 28 000011.111100 010010 

t16-t20 40 30 000010.111100 010001 

t21-t25 40 20 000110.111100 011110 

 

Table 2.7: Detected faults in cumulative execution time for software(S/W7) 

Time 
No. of Components in  

Software seven 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 45 28 000000.111011 010010 

t6-t10 45 32 000001.111011 110000 

t11-t15 45 22 000011.111011 010010 

t16-t20 45 15 000010.111011 010001 

t21-t25 45 08 000110.111011 011110 

 

Table 2.8: Detected faults in cumulative execution time for software(S/W8) 
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Time 
No. of Components in  

Software eight 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 50 35 000000.101011 110010 

t6-t10 50 40 000001.101011 111100 

t11-t15 50 32 000011.101011 110000 

t16-t20 50 30 000010.101011 010001 

t21-t25 50 28 000110.101011 010010 

 

Table 2.9: Detected faults in cumulative execution time for software(S/W9) 

Time 
No. of Components in  

Software nine 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 55 32 000000.101100 110000 

t6-t10 55 28 000001.101100 010010 

t11-t15 55 25 000011.101100 010101 

t16-t20 55 24 000010.101100 011101 

t21-t25 55 20 000110.101100 011110 

 

Table 2.10: Detected faults in cumulative execution time for software(S/W10) 

Time 
No. of Components in  

Software ten 

Faults 

Detected 
Input Encoding Output Encoding 

t1-t5 60 44 000000.100010 111010 

t6-t10 60 40 000001.100010 111101 

t11-t15 60 38 000011.100010 110101 

t16-t20 60 32 000010.100010 110000 

t21-t25 60 28 000110.100010 010010 

 
Since for each prediction we have the two experiments one 

for the components and the other one for the complete 

software. As far as first experiment is concerned we 

consider the cumulative execution time as a free variable 

and the corresponding cumulative faults count as the 

dependent variable. Therefore, we trained the network for 

components with the execution time as the input and 

observed fault count as the target output. It is considered 

that the training ensemble at time 𝑡𝑘
𝑖  consists of complete 

failure history of the i
th

 component since t=0. As the feed 

forward neural network cannot predict well without any 

exposure to the failure history of the component, we 

imposed a limit on the minimum size of the training 

ensemble. Thus in our first experiment the minimum 

ensemble size was restricted to 3 data points i.e. the 

components are assumed to be at first 3 sessions of test are 

over. Hence after successful training for each neural 

network with failure history up to 𝑡𝑘1
, we fed the future 

cumulative time as test input patterns i.e. 𝑡𝑘+1
𝑖   to the 

neural network of i
th

 component to get the predicted 

number of faults. These predictions are observed up to tq. 

Now we consider our second experiment. In this we 

trained the neural network with the cumulative execution 

time tk+1 to tk+q  and  predicted faults of components from 

first experiment as the input and the observed faults count 

from the complete software as the target output. Hence, 

after successful training to the network with failure history 

up to tk+q and predicted faults from each component up to 

tk+q, we fed the network with future cumulative execution 

time as input patterns from tk+q+1 to tk+q+u to get the 

network’s  prediction. Single hidden layer is considered 

with 10 neurons for the neural network architecture used 

for the components and two hidden layers with 10 and 5 

neurons in each is considered for the neural network used 

to predict faults from complete software. These selection 

are based on the heuristic criteria, which indicates that the 

number of inputs are more in global training set with 

respect to local training sets. Therefore, the problem of 

mapping in complete software is much complex with 

respect to the problem of mapping for neural networks of 

components. The number of units in hidden layers is 

selected as per the suitability of effective performance of 

neural network as good generalization and approximation.

 

5. RESULTS AND DISCUSSION 

In our experiment, we consider the different neural 

network architectures for predicting the faults in future 

cumulative execution time as a free variable. The first 

architecture consists of 18 input units, one hidden layer 

with ten neurons and one output layer with 15 units. The 

second neural architecture is used for predicting the 

number of faults for whole software consists of 10 units 

and 5 units in hidden layer and one output layer with 6 

units. We conducted the whole simulation in two phases 

for two different situations. In first phase, we consider the 

components for ten different software consisting of 

different number of components. In this simulation, we 

consider the cumulative execution time as a free variable 

for each of the software, the number of components in the 

software and corresponding cumulative faults count for 

each component of the software as the dependent variable. 
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We have trained the neural network with the execution 

time, components as input after encoding these inputs in 

Gray code as input pattern vector of size 18x1. The 

observed faults count for each component are considered 

as output pattern vector of size 12x1 after encoding of 

observed faults in Gray code. In this training, the input 

patterns are provided in cumulative time interval from t1-

t25 with the step of five and this training is continued for 

each of the software and training graphs for epochs of 

convergence are shown from figure 5.1 to figure 5.10. 

 
Figure 5.1 

   

   

Figure 5.2 
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Figure 5.3 

 

  

Figure 5.4 
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Figure 5.5 

  

Figure 5.6 
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Figure 5.7 

      

  

Figure 5.8 
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Figure 5.9 

 

  
Figure 5.10 
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After this the second phase of first experiment was started 

for the prediction of detected faults in next cumulative 

execution time interval. Here the next cumulative 

execution time interval means that the time which is not 

being used in our training set. Thus to predict the faults we 

consider the cumulative execution time interval from t26-

t50. The trained neural network considered this unknown 

next cumulative execution time interval with the number 

of components as input pattern vector for simulation. The 

simulation behavior of trained neural network is exhibiting 

the predicted faults. These predictions of faults for 

different software are shown in the figures from 5.11(a) to 

5.15(a). These figures 5.11(a) to 5.15(a) are representing 

the graphs for number of faults observed in the 

components for software in given cumulative execution 

time interval whereas figures 5.11(b) to 5.15(b) are 

representing the number of predicted faults in components 

in the software for future cumulative execution time 

interval.  

 

 
Figure 5.11(a) 

 

 

 

 

 
Figure 5.11(b) 
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Figure 5.12(a) 

 

 

 

 

 

 
Figure 5.12(b) 
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Figure 5.13(a) 

 

 

 

 

 

 
Figure 5.13(b) 
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Figure 5.14(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14(b) 

 

 

0

5

10

15

20

25

30
N

o
.  

o
f 

Fa
u

lt
s 

D
te

ct
e

d

No. of faults detected in the components  at different time 

interval(t1-t25) 

0

2

4

6

8

10

12

14

16

N
o

. o
f 

 F
au

lt
s 

P
re

d
ic

te
d

No. of faults predicted  in the components  at different time interval 

(t26-t50) 



ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                www.ijarcce.com                                              2649 

 
Figure 5.15(a) 

 

 

 

 
Figure 5.15(b) 

In the analysis of the results it can be seen that the 

behavior of faults prediction is a generalized 

approximation of the observed faults. Thus it shows that 

the predicted faults are approximately tends to interpolated 

from observed faults in given cumulative execution time 

interval. Now, the first phase of the second experiment is 

started in the same manner as previous experiment with the 

change that in place of components, the dependent 

Variable i.e. observed faults are considered for complete 

software in the same cumulative execution time interval. 

Here in this experiment the input pattern vector of 12x1 is 

presented to the neural network with 6x1 pattern vector as 

target output for training. The training is accomplished for 

each of the software on same cumulative execution time 

interval as it used for its components. The performance of 

neural network for complete software is shown in the 

figure 5.16 to figure 5.25. 
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Figure 5.16 

 
Figure 5.17 
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Figure 5.18 

 
Figure 5.19 
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Figure 5.20 

 

 
Figure 5.21 
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Figure 5.22 

 

 
Figure 5.23 
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Figure 5.24 

 

 
Figure 5.25 
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After this training the neural network is simulated for 

predicting the number of faults in next cumulative 

execution time interval. Thus for evaluating the 

performance of trained neural network, we consider the 

next cumulative execution time interval t26-t50. The 

simulated behavior of the neural network exhibited the 

number of detected faults as it can be seen from figure 

5.26 to figure 5.35. The graph of figure 5.26 to figure 5.30 

are representing the no. of observed faults for given 

cumulative execution time interval whereas the graph of 

figure 5.31 to figure 5.35 are representing the number of 

predicted faults in whole software for unknown next 

cumulative execution time interval.  

 

 
Figure 5.26 
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Figure 5.28 

 

 
Figure 5.29 
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Figure 5.30 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 

 

 

 

 
Figure 5.32 

 

0

5

10

15

20

25

30

35

N
o

. o
f 

fa
u

lt
s 

 p
re

d
ic

te
d

No. of Faults Predicted in whole Software at different time interval 

(t26-t50)

0

5

10

15

20

25

30

35

N
o

. o
f 

 f
au

lt
s 

p
re

d
ic

te
d

No. of Faults Predicted for whole Software at different time 

interval (t26-t50)



ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                www.ijarcce.com                                              2658 

 
Figure 5.33 

 

 

 

 
Figure 5.34 
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Figure 5.35 

The graph of predicted faults for each of the software is 

same, but it is representing the generalized approximations 

of corresponding graphs of number of detected faults in 

that software. The characteristics of predicted faults for 

each of the software is consistent, it means the prediction 

of faults for the software is not behaving in the same 

manner as the prediction of faults for the components. 

Thus the behavior for predicting the faults in the software 

indicates the prediction is independent from the fault 

prediction of the components of the software. This 

observation concretes the concepts that the software 

reliability of software may not depend upon the behavior 

of components.   

6. CONCLUSION 

We know that the software reliability is effective technique 

for measurement of software quality over a time period. In 

this paper, we employed the feed forward neural 

architecture for estimating the reliability of component 

based software. This estimation of reliability is considered 

in two phases. The first phase included the prediction of 

faults in each component of the software for cumulative 

execution time. In second phase the faults were predicted 

for the complete software. Two stages of feed forward 

neural network architecture were used. The first stage of 

neural networks architecture is used to predict the faults 

from each component. There is as much neural network 

architecture as the number of components in the software. 

The predictions of faults were based on the generalized 

behavior of trained neural network for given training sets. 

The final neural network architecture is used for the 

prediction of faults from the complete software. This 

neural network architecture used the predicted faults from 

components as input with cumulative execution time to 

estimate the number of predicted faults. The following 

observations are drawn from the simulation of proposed 

method.     

(i) We have considered the software consisting of 

components divided into different sets and observed the 

number of faults encountered over a cumulative execution 

time interval separately for the known set of components. 

After that, we estimated the number of faults predicted for 

the randomly chosen set of components in software over 

next cumulative execution time interval. On comparing the 

detected faults and predicted faults, we have found a 

generalized faults prediction behavior or a expected 

number of faults in the set of components over a 

cumulative execution time interval and this can be useful 

in estimating the reliability for the set of components over 

a next cumulative execution time interval. 

(ii) Secondly, we have applied the neural network 

architecture for the software as a whole. In case of 

complete software, we have observed the number of faults 

detected by assuming all the components in the software as 

a single unit over cumulative execution time interval. After 

that, we observed the predicted number of faults in 

randomly chosen software consisting of components over 

the next cumulative execution time interval. In doing so, 

we have noticed very little variation in number of 

predicted faults for randomly chosen different software of 

small size over next cumulative execution time interval. 

We can conclude that with the help of proposed method 

we may estimate the software reliability for the small size 

software very effectively as a result of properly trained 

neural network architecture and observe a very little 

variation in the pattern of number of estimated faults in the 

software as single unit of number of components. 

(iii) There is an interesting behavior is observed 

during the simulation. The predicted faults from the 

complete software were approximately same in given 

cumulative execution time. This behavior was not found 

for their components. Thus, the predicted faults for 

cumulative execution time from each component were 

different. It indicates that the number of predicted faults 

from the complete software may approximately 

independent from the predicted number of faults from the 

component. Therefore, it is not necessary that if 
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components of software are predicting more number of 

faults than the complete software will also consider the 

increased number of faults. It is observed from the 

simulation of our proposed method that the number of 

predicted faults of complete software does not increase 

with increased predicted faults of its component. Thus, 

estimation of faults for complete software may not depend 

upon the estimation of faults prediction from its 

components. 

In the future, we can extend and explore the pattern of 

behavior of number of detected faults and predicted faults 

to estimating the software reliability for the software 

consisting of tightly interdependent and a very large 

number of components. 
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